Skip to main content.
Bard
  • Bard College Logo
  • Academics sub-menuAcademics
    • Programs and Divisions
    • Structure of the Curriculum
    • Courses
    • Requirements
    • Academic Calendar
    • College Catalogue
    • Faculty
    • Bard Abroad
    • Libraries
    • Dual-Degree Programs
    • Bard Conservatory of Music
    • Other Study Opportunities
    • Graduate Programs
    • Early Colleges
  • Admission sub-menuAdmission
    • Applying
    • Financial Aid
    • Tuition + Payment
    • Campus Tours
    • Meet Our Students + Alumni/ae
    • For Families / Familias
    • Join Our Mailing List
    • Contact Us
  • Campus Life sub-menuCampus Life
    Living on Campus:
    • Housing + Dining
    • Campus Services + Resources
    • Campus Activities
    • New Students
    • Visiting + Transportation
    • Athletics + Recreation
    • Montgomery Place Campus
  • Civic Engagement sub-menuCivic Engagement
    Bard CCE
    • Engaged Learning
    • Student Leadership
    • Grow Your Network
    • About CCE
    • Our Partners
    • Get Involved
  • Newsroom sub-menuNews + Events
    • Newsroom
    • Events Calendar
    • Press Releases
    • Office of Communications
    • Commencement Weekend
    • Alumni/ae Reunion
    • Fisher Center + SummerScape
    • Athletic Events
  • About Bard sub-menuAbout
      About Bard:
    • Bard History
    • Campus Tours
    • Mission Statement
    • Love of Learning
    • Visiting Bard
    • Employment
    • Support Bard
    • Open Society University Network
    • Bard Abroad
    • The Bard Network
    • Inclusive Excellence
    • Sustainability
    • Title IX and Nondiscrimination
    • Inside Bard
    • Dean of the College
  • Giving
  • Search
Bard Commencement Weekend, May 23–25, 2025
Information For:
  • Faculty + Staff
  • Alumni/ae
  • Families
  • Students

Giving to Bard
Quick Links
  • Apply to Bard
  • Employment
  • Travel to Bard
  • Bard Campus Map

Join the Conversation
Like us on Facebook
Follow us on Instagram
Read about us on Threads
Bluesky
Watch us on You Tube

News

science Menu
  • Overview
  • Calendar
  • Faculty
  • News
  • Facilities
  • Research
  • Bard-Rockefeller
  • Science Scholarships
Student smiling and holding up an award certificate.

Bard College Celebrates Student Achievements at Undergraduate Awards Ceremony

The annual ceremony is a celebration of the incredible talent and dedication showcased by Bard students, as well as the unwavering support and guidance from esteemed faculty and staff at the College.
four students smile at the camera from in front of colorful numbered banners showing UN goals

Bard College Students Attend UN Economic and Social Council Youth Forum

Jamora Aroyo-Jefferson ’28, Peter B Szasz ’28, Felipe Chitic Luis ’28, and Wilson Hundley ’28, members of Bard UNA's executive leadership team, joined other youth advocates and leaders from countries around the globe during the
A woman with blonde hair smiles at the camera

Citizen Science Used by Brooke Jude in Microbial Research Cited in The Scientist

With the help of students and citizen scientists who help identify and catalogue these microbes, Jude has been exploring local Hudson Valley waterways for 14 years.

Division of Science, Mathematics, and Computing News by Date

View Current
 
View by Year/Month
  Search:
Results 1-36 of 36

December 2020

12-06-2020
Bard Physicist Hal Haggard Coauthors New Study on Fast Spacetime Dynamics in Quantum Gravity
Dynamics has altered forever the once static arenas of space and time. Physicists have even measured spacetime deform and undulate as gravitational waves propagate away from colliding black holes. Regrettably, these dynamics have incompletely invaded the discrete, granular world of quantum gravity. In a new study in Physical Review Letters, Haggard, together with colleagues Seth Asante and Bianca Dittrich of the Perimeter Institute for Theoretical Physics, uses computer simulations to show that dynamical grains of space can be built up into a complete picture of a small but evolving quantum spacetime.
Read more in Physical Review Letters
Photo: Bard Assistant Professor of Physics Hal Haggard.
Meta: Type(s): Faculty | Subject(s): Division of Science, Math, and Computing,Physics Program | Institutes(s): Bard Undergraduate Programs |

November 2020

11-10-2020
Bard Alum Maia Weisenhaus ’18 Interviews Arseny Khakhalin, Assistant Professor of Biology
Arseny Khakhalin grew up in a Soviet “science town” outside Moscow. He remembers playing in the mud as a child just days after the Chernobyl disaster, and being rushed to his father’s research institute so he could be checked for exposure to radioactivity. Through the collapse of the Soviet Union and years of hardship for his family, Arseny followed his own passion for the sciences, and a path that led him to Bard. “When we advocate for science, we advocate for ourselves, but we also genuinely hope that we can be useful to this world,” he says. “So as long as we keep trying to care about others, challenge each other, argue, and disagree, we’ll be doing the right thing.”

Bard alumna and biology major Maia Weisenhaus ’18 conducts the interview; she is currently a research assistant in the Behnia Lab at Columbia University and is continuing her education at the Columbia School of Professional Studies.
Interview in Scientist on the Subway
Photo: Assistant Professor of Biology Arseny Khakhalin.
Meta: Type(s): Alumni,Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing,Faculty | Institutes(s): Bard Undergraduate Programs |

October 2020

10-08-2020
Podcast: Disease Ecologists Felicia Keesing and Rick Ostfeld Discuss the Interplay of Biodiversity and Pandemics
Bard’s Felicia Keesing and Rick Ostfeld of the Cary Institute of Ecosystem Studies address the topic of infectious disease spillovers, and talk about the pathogens that cause diseases like COVID-19. Preserving and promoting biodiversity—including reducing carbon pollution, consuming fewer animal products, and supporting science-based decision-making—is key to preventing disease transmission from animals to humans, the scientists say. “This is a really pivotal election in the United States for thinking about whether we want to have science and science-based decision-making playing a role as we go forward and rebuild—the sort of ‘build back better’ theme I think is important to bring in here,” says Keesing. “We are going to need to rebuild our economy in different ways, our energy infrastructure, our employment infrastructure, our health infrastructure, and our environmental infrastructure as we come back from this. If we’re wise, and informed by this experience, we can do a better job so that we make this less likely to ever happen again.”
Full Story on WAMC
Photo: Rick Ostfeld and Felicia Keesing. Photo by Stephen Reiss for NPR
Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing,Environmental/Sustainability,Global Public Health Concentration | Institutes(s): Bard Undergraduate Programs |

September 2020

09-22-2020
American Mathematical Society Recognizes Bard Math Circle’s CAMP Program and Its Founder, Professor Japheth Wood
The Bard Math Circle’s Creative and Analytical Math Program (CAMP) and its founder, professor Japheth Wood, have been recognized with a 2020 Epsilon Award for Young Scholars Programs. The Epsilon Awards, given annually by the American Mathematical Society, support some of the most prestigious summer math enrichment programs in the United States.

CAMP is not “summer camp.” It is a nonresidential academic program for middle school students that features mathematics in a creative learning environment. CAMP started in August 2014 with initial funding from the Dolciani Math Enrichment Grant Program, and it has grown to become a popular late-summer treat for math kids in the Mid-Hudson Valley and beyond. Experienced educators and undergraduate math majors lead classes and activities that emphasize hands-on math, teamwork, and outside-the-box thinking.

This summer, CAMP was held online for the first time. During the first week in August, 49 middle schoolers and a staff of 15—including seven Bard math and computer science majors and two Bard math alumnae—got together via Zoom. “Since cyberspace shortened the distance between us, the Bard Math Circle received numerous applications from around the country,” says Wood. “We could see students’ excitement over running into old friends and connecting with new CAMPers in Zoom classrooms.”
The cipher wheel used for decoding messages.


This year’s CAMP theme was cryptography. Students explored cipher encryption (using a cipher wheel like the one at right), created artworks with encoded messages, made cryptograms, and more.

“Though [CAMP] wasn’t around during my student days at Bard, an amazing community has developed since,” says Bard alumna and CAMP senior instructor Erin Toliver ’00. “I love seeing the look on a student’s face when they’ve discovered a new pattern, found a different perspective, or made a new connection for a deeper understanding of this glorious world of mathematics.”

Learn more about the CAMP program at bardmathcircle.org.
Full story at ams.org
Photo: Math students from across the country attended CAMP 2020 via Zoom.
Meta: Type(s): Faculty | Subject(s): Computer Science,Division of Science, Math, and Computing,Mathematics Program | Institutes(s): Bard Undergraduate Programs |
09-22-2020
Marta Shocket ’09 Is Lead Author of New Study that Shows Rising Temperatures Could Shift West Nile Virus Transmission in the United States
“As the climate warms, it is critical to understand how temperature changes will affect the transmission of mosquito-borne diseases,” says Shocket, who was a postdoctoral fellow at Stanford University at the time the study was carried out, and is now a postdoctoral researcher at the University of California, Los Angeles.
Full story in Science Daily
Read the study at eLife
Photo: Lead author, Bard alumna Marta Shocket ’09. Photo courtesy the author
Meta: Type(s): Alumni | Subject(s): Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
09-22-2020
Bard’s Felicia Keesing Featured in David Attenborough’s New BBC Documentary <em>Extinction: The Facts</em>, Discussing How Human-caused Changes to Habitat Put Us at Greater Risk for Pandemic Diseases
“Often the best reservoirs for the pathogens that can jump to humans are smaller-bodied species, like rats and mice and certain kinds of bats,” Keesing says. “When we have intact natural systems with high biodiversity, these species are kept in check, but when humans destroy habitat, the large predators and herbivores disappear first. Which means the smaller-bodied species are the big winners. They proliferate wildly, they live at super high density and are the ones far more likely to make us sick.”
Full story in the London Express
Watch the BBC Documentary
Photo: Still from the BBC documentary “Extinction: The Facts” with Bard biologist Felicia Keesing
Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
09-02-2020
Susan D’Agostino ’91 on Researchers Studying the Mathematical Efficiency of Emperor Penguin Huddles for Insights on the Health of Penguin Colonies
“Penguins seem to know what mathematicians learned long ago: The densest packing of shapes on a plane is a hexagonal grid,” writes D’Agostino, in The Atlantic. “Huddles typically last a few hours, during which the penguins may cycle through multiple rotations from the huddle’s cold exterior to its warm interior. In the process, each individual prioritizes his own warmth, yet the huddle’s heat is shared by all.”
Read More
Photo: Lars Lehnert / 500px / Getty
Meta: Type(s): Alumni,Article | Subject(s): Division of Science, Math, and Computing |

August 2020

08-25-2020
Associate Professor of Biology Cathy Collins Comments on the Unique Value of a New Study Cataloging New Guinea’s 13,634 Plant Species
“Most studies now are conducted in hindsight, trying to understand what the effect of anthropogenic disturbance is on the system,” said Collins, of the research published August 5 in the journal Nature. “With studies like this one, researchers will then have a fuller understanding of what’s lost if those changes happen.”
Full story at Mongabay
Photo: Mature forest and mountains, as seen from the Lae-Madang Highway in Morobe province, Papua New Guinea. Image courtesy Zacky Ezedin/University of Zurich
Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
08-12-2020
Bard Biologist Felicia Keesing: Disease-bearing Ticks Are Thriving as Climate Change Heats Up US
Blood-sucking ticks can spread Lyme disease and are extending beyond their traditional northeastern range. “It’s a nightmare scenario,” says Professor Keesing, who has coauthored research linking the heat of the climate crisis to greater tick activity. “We are seeing more tick-borne diseases in more places. Wherever you find ticks, they are spreading.”
Full story in the Guardian
Read Professor Keesing’s Study
Photo: Bard biologist Felicia Keesing
Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
08-06-2020
Dan Gettinger ’13 Talks to <em>Smithsonian </em>Magazine about the Future of Drone Use for Home Delivery
“Right now drones can’t carry big payloads and they mostly can’t fly very far, so it’s a question of getting the drones to where they need to be for them to be useful,” says, Gettinger, founder and codirector of the Bard Center for the Study of the Drone. “Combining drones with existing transportation infrastructure like trucks could make a lot of sense.”
Full story in the Smithsonian
Photo: Susie and Paul Sensmeier of Christiansburg, Virginia, watch the arrival of the first drone-shipped home delivery in fall 2019. Photo courtesy “Smithsonian” Magazine
Meta: Type(s): Alumni | Subject(s): Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
08-05-2020
Bard College Biology Professor Felicia Keesing Coauthors Overview of New Global Study Showing that Human-Caused Changes to Ecosystems Favor Species Most Likely to Cause Human Illness

Large-Scale Study, Published in Nature, Supports Findings of Keesing and Colleague Richard S. Ostfeld’s Two Decades of Research on Lyme Disease Ecology and Other Linkages Between Ecology, Conservation, and Human Health

The COVID-19 pandemic triggered by a coronavirus of animal origin has awakened the world to the threat that zoonotic diseases pose to humans. While examples of land-use changes increasing the risk of zoonotic disease have been accumulating for decades, questions have remained about the scale of the pattern and its specific underlying mechanisms. In a new large-scale study, “Zoonotic host diversity increases in human-dominated ecosystems,” Rory Gibb, Kate Jones, and their coauthors find global evidence that human land use changes natural habitats in ways that favor animals more likely to cause human illness. The study, published today in the journal Nature, strongly supports the findings of Bard College Biology Professor Felicia Keesing and her husband and research partner Richard S. Ostfeld’s two decades of extensive research on Lyme disease ecology and other linkages between ecology, conservation, and human health.

“The transformation of forests, grasslands, and deserts into cities, suburbs, and agricultural land has caused many species to decline or disappear and others to thrive,” write Ostfeld, a disease ecologist at the Cary Institute for Ecosystem Studies, and Keesing in a general overview of the primary study published concurrently by Nature. “The winners are often generalists that are small, abundant and have ‘fast’, short lives, such as rats and starlings. Gibb et al. show that, worldwide, these winners are much more likely to harbor disease-causing agents (pathogens) than are the losers. As a result, when we convert natural habitats to our own uses, we inadvertently increase the probability of transmission of what are known as zoonotic infectious diseases, which are caused by pathogens that can jump from animals to humans.”

Ostfeld, and Keesing write that the patterns that Gibb and his coauthors detected from their analyses—which explored 6,801 ecological communities and 376 host species worldwide—were striking and provide strong evidence to lingering questions about the global scale and mechanisms of zoonotic disease transmission. “Is it simply a coincidence that the species that thrive in human-dominated landscapes are often those that pose zoonotic threats, whereas species that decline or disappear tend to be harmless? Is the ability of animals to be resilient to human disturbances linked to their ability to host zoonotic pathogens?” write Ostfeld and Keesing. “Gibb et al. found that the animals that increase in number as a result of human land use are not only more likely to be pathogen hosts, but also more likely to harbor a greater number of pathogen species, including a greater number of pathogens that can infect humans.”

With awareness of and concern about zoonotic diseases surging in the wake of the COVID-19 pandemic, Ostfeld and Keesing write that—by showing that the greatest zoonotic threats arise where natural areas have been converted to croplands, pastures, and urban areas—Gibb et al correct the widespread misperception that wild nature is the greatest source of zoonotic disease. This study and others strongly suggest that restoring degraded habitat and protecting undisturbed natural areas would benefit both public health and the environment. “Going forward, surveillance for known and potential zoonotic pathogens will probably be most fruitful if it is focused on human-dominated landscapes,” they write.

To read the full study in Nature, click here. To read Ostfeld and Keesing’s overview, click here.

Felicia Keesing, David and Rosalie Rose Distinguished Professor of Science, Mathematics, and Computing, has been on the Bard faculty since 2000. She has a B.S. from Stanford University and a Ph.D. from the University of California, Berkeley. Since 1995, she has studied how African savannas function when the large, charismatic animals like elephants, buffaloes, zebras, and giraffes disappear. She also studies how interactions among species influence the probability that humans will be exposed to infectious diseases. Keesing also studies Lyme disease, another tick-borne disease. She is particularly interested in how species diversity affects disease transmission. More recently, she has focused on science literacy for college students, and she led the re-design of Bard College’s Citizen Science program. Keesing has received research grants from the National Science Foundation, National Geographic Society, National Institutes of Health, Environmental Protection Agency, and Howard Hughes Medical Institute, among others. She has been awarded the United States Presidential Early Career Award for Scientists and Engineers (2000). She is the coeditor of Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems (2008) and has contributed to such publications as Nature, Science, Proceedings of the National Academy of Sciences, Ecology Letters, Emerging Infectious Diseases, Proceedings of the Royal Society, Ecology, BioScience, Conservation Biology, and Trends in Ecology & Evolution, among others.
# # #
(8.5.20)
 
Read More
Photo: Bard Biology Professor Felicia Keesing doing fieldwork on tick-borne diseases in the Laikipia District of Kenya
Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing,Environmental/Sustainability,Faculty | Institutes(s): Bard Undergraduate Programs |

July 2020

07-24-2020
Senior Project Spotlight: Sasha Fedchin ’20
Sasha Fedchin is a double major in classical studies and computer science. Originally from St. Petersburg, Russia, he is interested in machine learning, natural language processing (NLP), and ancient languages. For his Senior Project in classics, Sasha explored how Seneca responded to ideas embraced by his predecessors in his tragedies, and employed various dramatic techniques to emphasize his position on a given issue. In particular, he studied Seneca’s use of trimeter, a meter commonly employed for dialogues in ancient drama, and how the trimeter of early Renaissance poets is different from that of Seneca. To conduct a comprehensive analysis of Latin trimeter, Sasha collaborated with the members of the Quantitative Criticism Lab at the University of Texas at Austin, who apply NLP and other statistical approaches to the study of literature and culture.

Sasha’s computer science Senior Project focused on code completion. Broadly, code completion aims to speed up the coding process by predicting what a programmer would want to type next. For his project, Sasha tackled a problem that involved predicting future imports in Java code with the help of graph neural networks. Having been previously involved in NLP research, he is excited to learn more about the ways machine learning can be applied to the study of natural and computer languages. Sasha is delighted to begin his PhD studies this fall in the Department of Computer Science at Tufts University.
Photo: Sasha Fedchin ’20
Meta: Type(s): Student | Subject(s): Classical Studies Program,Computer Science,Division of Science, Math, and Computing,Division of Social Studies,Office of Undergraduate Research |

June 2020

06-19-2020
Bard Biology Professor Felicia Keesing and Husband and Research Partner Richard Ostfeld’s Two Decades of Research on Lyme Disease Ecology Highlighted in <em>New York Times Magazine</em> Feature on Emerging Infectious Diseases
“The best hosts for many diseases are often the very species that thrive when humans disturb habitats and diversity declines,” Keesing said. “Eventually we realized that what we thought was a peculiarity of the Lyme disease system was happening all over the planet.”
 
Read more in the New York Times
Photo: Illustration by Mario Hugo
Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
06-02-2020
Bard Physics Professor Shuo Zhang Discusses Her Research on Galactic Center Filaments at American Astronomical Society Press Conference
Bard College Assistant Professor of Physics Shuo Zhang discussed her current research and participated in a press briefing Tuesday, June 2, at the 236th Meeting of the American Astronomical Society. In her presentation, “Revealing the Powerful Particle Accelerator in the Galactic Center,” Zhang discussed her research exploring the nature and origin of one of the most striking phenomena in the center of the Milky Way Galaxy, the existence of dozens of filamentary structures that can be as long as hundreds of light years. In a series of papers, Zhang and her research partners propose that the supermassive black hole in the Galactic center, Sagittarius A*, is the engine producing energetic particles that eventually light up these filaments in the X-ray and radio wave bands.

Zhang says the theory is supported by recent gamma-ray and radio observations. “Using observations recently obtained by the Chandra space telescope, we see evidence for new X-ray filaments,” says Zhang. “My next goal is to conduct a systematic multi-wavelength search for Galactic center filaments and use their spatial distribution and spectral information to further test our theory.”

The American Astronomical Society is the major organization of professional astronomers in North America, with a membership of 7,700 individuals with research and educational interests in astronomical sciences. The 236th meeting is the 2020 summer annual American Astronomical Society conference, which brings together the international astronomer community and shares the most recent discoveries and results in astronomy. For more information, visit aas.org.

Shuo Zhang, assistant professor of physics at Bard, is interested in observational high-energy astrophysics, including supermassive black hole accretion and feedback, origin of Galactic cosmic-rays and dark matter searches. She studies outburst histories of the supermassive massive black hole at the center of the Milky Way galaxy and nearby galaxies, in order to understand supermassive black hole activity cycle, particle acceleration mechanism and physics under strong gravitational field. Recently, she initiated an original particle astrophysics project on probing Galactic cosmic-ray particles at MeV through PeV energy scales suing innovative methods, aiming to understand the origin of Galactic cosmic-rays and to reveal power particle accelerators at the center of the Galaxy. Zhang served previously as a NASA Einstein Fellow at Boston University, and a postdoctoral scholar and Heising-Simons Fellow at the MIT Kavli Institute for Astrophysics and Space Research. In addition to her research, she is a referee for Nature, monthly notices of the Royal Astronomical Society, and a panel reviewer for NASA’s Astrophysics Data Analysis Project. She is also a member of several scientific collaborations, including Event Horizon Telescope (EHT) collaboration, eXTP Space Telescope Observatory Science Working Group, Chandra/ACIS Instrument Team, and NuSTAR Space Telescope Science Team, among others. Her work has appeared frequently in Astrophysical Journal and Monthly Notices of the Royal Astronomical Society. Zhang earned a BS degree from Tsinghua University and a PhD from Columbia University.
 
Photo: Bard College Assistant Professor of Physics Shuo Zhang
Meta: Type(s): Faculty | Subject(s): Division of Science, Math, and Computing,Physics Program | Institutes(s): Bard Undergraduate Programs |

May 2020

05-20-2020
Bard Assistant Professor of Mathematics Matthew Junge Talks with WAMC about National Science Foundation RAPID Grant to Study COVID-19 Forecasting Models
“What’s really distinguishing [our study} from a lot of the studies that are being quoted by the national press . . . and the Administration is that we look at the local connections inside of communities, and those are usually ignored by bigger studies,” Junge tells WAMC’s Hudson Valley Bureau Chief Allison Dunne. “Our study’s taking this opposite perspective of really finally modelling person-to-person connections that come up in our day-to-day lives, like who we socialize with, where we work, connections of that sort, and we ask how the disease spreads in this sort of zoomed-in picture.”
Full interview at WAMC
Photo: Photo courtesy Professor Matthew Junge
Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing,Faculty,Mathematics Program | Institutes(s): Bard Undergraduate Programs |
05-07-2020
Bard College Professors Win National Science Foundation Rapid Grant to Develop Forecasting Models that Better Capture the Geographic and Social Complexity of the COVID-19 Pandemic
The National Science Foundation (NSF) has awarded Bard College professors Matthew Junge, mathematics, and Felicia Keesing, biology; and Grinnell College professor Nicole Eikmeier, computer science, a $60,000 grant to develop network models that—by more accurately incorporating social distancing measures—better capture the geographic and social complexity of the COVID-19 pandemic. Awarded through the NSF’s Rapid Response Research (RAPID) program, which provides support for urgent scientific research that responds to emergencies and unexpected events, the grant includes funding for salaries, publishing costs, and several undergraduate research assistants over a six-month period.

Junge, Bard assistant professor of mathematics and lead investigator on the project, says their project aims to develop network models and mathematical theory to test the robustness of some prominent models being used by governments to justify the extreme levels of intervention we are living through. One advantage of a network model, which tries to accurately describe the face-to-face interactions each individual in a society has and how an infection might spread, is that it is relatively easy to implement social distancing into the network.

“Mathematicians are fairly adept at modeling the natural evolution of epidemics, but most ‘off the shelf’ models were not built to describe the dramatic levels of intervention—business closures, travel limitations, and social distancing—that we are living through during the COVID-19 pandemic,” says Junge. “The grant brings together a biologist (Felicia), computer scientist (Nicole), and mathematician (myself) as well as a few undergrad research assistants to tackle this problem over the next six months. Felicia is an expert in infectious disease, Nicole in modeling real world networks, and I am experienced in network infection models.”

Matthew Junge, assistant professor of mathematics, comes to Bard from Duke University, where he served as William W. Elliott Research Assistant Professor. He received his doctorate in mathematics from the University of Washington, where he also earned MS, BS, and BA degrees. His areas of interest include probability, statistical physics, and mathematical biology. Junge’s research takes a probabilistic approach to particle systems from physics and biology, including models for chemical reactions, species proliferation, and epidemic outbreaks. He also studies random structures from classical mathematics and computer science, such as permutations and fragmented spaces.

Felicia Keesing, David and Rosalie Rose Distinguished Professor of Science, Mathematics, and Computing, has been on the Bard faculty since 2000. She has a B.S. from Stanford University and a Ph.D. from the University of California, Berkeley. Since 1995, she has studied how African savannas function when the large, charismatic animals like elephants, buffaloes, zebras, and giraffes disappear. She also studies how interactions among species influence the probability that humans will be exposed to infectious diseases. Keesing also studies Lyme disease, another tick-borne disease. She is particularly interested in how species diversity affects disease transmission.

Nicole Elkmeier is an assistant professor of computer science at Grinnell College. She has a PhD in Mathematics from Purdue University and a BA from in mathematics and computer science from Concordia College. Her research is in the field of Network Analysis, specifically focused on studying features of real data and constructing and analyzing graph models which maintain those features. A network, in this case, is a set of nodes (people, web pages, etc.) connected by edges (physical connection, collaboration, etc). She is interested in random graph models, which are used to study how well an algorithm may do on a real-world network, and for testing properties that may further improve algorithms. Her research is at the intersection of math and computer science.
 

Photo: Bard College professors Matthew Junge and Felicia Keesing
Meta: Type(s): Faculty | Subject(s): Bard Connects,Biology Program,Division of Science, Math, and Computing,Faculty,Mathematics Program,Science, Technology, and Society | Institutes(s): Bard Undergraduate Programs |

April 2020

04-27-2020
Bard Biologist Felicia Keesing: There Will Be More “Zoonotic” Viruses Where COVID Came From
We still know little about COVID-19, but one of the few certainties is that it is a zoonotic disease. This means that at some point in recent history it jumped from an animal to a human. Bard biologist Felicia Keesing’s work shows how a loss of biodiversity increases the risk of disease transmission. “More biodiversity equals more predators and parasites and therefore less density of any species hosting a pathogen,” says Professor Keesing. “But reduce that diversity and not only do you have more host species, but you also increase encounter rates between pathogens and hosts.”
Full story in Forbes Magazine
Professor Keesing on Novel Disease Prevention

Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
04-27-2020
Hope for the Infected: Bard Alumna, Virologist Juliet Morrison ’03 on Treatments for COVID-19
Though no proven treatment for COVID-19 currently exists, virologist Juliet Morrison ’03 feels there’s a good chance one will emerge. Morrison, an assistant professor of microbiology and plant pathology at University of California Riverside, investigates the science behind promising avenues for new antiviral therapies. In this interview, she explains what those are and weighs in on drugs being tested.
Full story in UC Riverside News

Meta: Type(s): Alumni | Subject(s): Bardians at Work,Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
04-25-2020
Adam Baz ’06 on How to Make It in America as a Professional Falconer
Bard alumnus Adam Baz is an urban falconer based in Los Angeles. Operating as Hawk on Hand, Adam works in bird abatement, scaring away “pest birds” from places like farms, airports, and solar panels. He also performs demonstrations and offers educational programs. But can the “hawk hustle” withstand a sluggish economy and increased competition from aspiring young falconers?
Full story in the New York Times
Photo: Adam Baz and Fox, a Harris’s hawk, in downtown Los Angeles. Photo by Jake Michaels, courtesy the New York Times
Meta: Type(s): Alumni | Subject(s): Bardians at Work,Career Development,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
04-25-2020
Bard Alum, Journalist Evan Nicole Brown ’16 on the Race to 3D-Print 4 Million COVID-19 Test Swabs a Week
The United States needs tens of millions of nasal swabs if it’s going to test enough people for COVID-19 to safely reopen the economy, but swabs are in short supply. A consortium of academics, medical workers, and manufacturers has joined forces to relieve the bottleneck through 3D printing.
Full story in Fast Company

Meta: Type(s): Alumni | Subject(s): Career Development,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
04-22-2020
Bard Alum Arthur Holland Michel ’13 on Ethics, Surveillance, and the Coronavirus
Michel, founder of Bard’s Center for the Study of the Drone and now a senior fellow at the Carnegie Council, talks to Alex Woodson about the ACLU’s First Amendment challenge to Baltimore’s experimental aerial surveillance program, and the broader issue of surveillance in the context of the COVID-19 pandemic.
Podcast and Transcript at the Carnegie Council
Photo: Photo by Marco Verch, courtesy Creative Commons
Meta: Type(s): Alumni | Subject(s): Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
04-22-2020
Elizabeth Royte ’81: Food Waste—and Food Insecurity—Rising amid Coronavirus Panic
With panic buying at grocery stores, restaurant closures, and rising unemployment, food waste and food insecurity are on the rise. Bard alumna Elizabeth Royte reports on what can be done about it.
Full story at the Food & Environment Reporting Network
Photo: Photo courtesy FERN
Meta: Type(s): Alumni | Subject(s): Bard Farm,Division of Science, Math, and Computing,Environmental/Sustainability | Institutes(s): Bard Undergraduate Programs |
04-12-2020
Bard Connects: Faculty and Staff Get Creative to Provide Protective Gear to Regional Health Workers

“Life in the era of COVID-19, as in all times of crisis, amplifies our basic instincts. Do we become anxious or confident, selfish or generous, rigid or adaptable? The same applies to institutions. And right now, at this moment of national and global crisis, Bard College is demonstrating who we are: student-focused, innovative, entrepreneurial, and civically engaged.” —Jonathan Becker, Vice President for Academic Affairs and Director of the Center for Civic Engagement at Bard College


A broad network of Bard faculty and staff—including Ivonne Santoyo-Orozco and Ross Exo Adams in the Bard Architecture and Design Program; Maggie Hazen and Melinda Solis in Studio Arts; IT’s Doug O’Connor, Hayden Sartoris, and Christopher Ahmed; and the Philosophy Program’s Katie Tabb—has come together to produce face shields for frontline health-care workers who are grappling with a nationwide shortage of protective gear.
3D-printed face shield components.
3D-printed face shield components.


With two 3D printers loaned by Bard physicist Paul Cadden-Zimansky, Exo Adams and Santoyo-Orozco set up a makeshift lab in Tivoli to fabricate reusable face shields for health-care workers. When the lab is fully operational, they expect to produce up to 50 shields per week. Hazen and Solis have begun a production line as well, using 3D printers purchased with proceeds from a GoFundMe campaign established by MFA alumna Luba Drozd ’15 that has raised more than $20,000. A small batch of shields has already been distributed to Columbia Memorial Hospital in Hudson, New York, and the group is now looking for more distribution options in the Hudson Valley. Deliveries of face shields are also scheduled for Albany Medical Center and, in Dover, New Jersey, Saint Clare’s Hospital, where a Bard student’s relative works and on whose behalf the student made a request. Anyone interested in distribution or in assisting with the project should contact Doug O’Connor ([email protected]), who is centralizing the distribution efforts with the help of CCS Bard students.

And in Annandale, members of the Fisher Center’s Costume Shop—together with Audrey Smith from Buildings and Grounds, Rosalia Reifler from Environmental Services, and Saidee Brown from the President’s Office—have sewn nearly 200 face masks for the essential College employees who remain on campus.
 
To learn more about virtual engagement opportunities at Bard, visit Bard Connects.
Photo: L–R: Visiting Artist in Residence Maggie Hazen and partner Lauren Enright wearing Bard-made, 3D-printed protective face shields. Photo by Maggie Hazen
Meta: Subject(s): Bard Connects,Community Engagement,Division of Science, Math, and Computing,Division of the Arts,Physics Program,Science, Technology, and Society,Studio Arts Program | Institutes(s): Bard Undergraduate Programs,Center for Civic Engagement,Fisher Center |
04-11-2020
Ethicist Alex John London ’94: Hydroxychloroquine Hype Could Bungle the Science
Researchers and doctors around the world are in a race to save lives, not only through caring for patients sick with COVID-19 but also in the hunt to discover an effective treatment or vaccine. Bard alum Alex John London ’94, whose research focuses on ethical and policy issues surrounding the development of novel technologies in medicine, says that in the rush to do science quickly, it is easy to make mistakes. “The point of research is to reduce uncertainty—to sort out dead ends from fruitful treatment strategies. But if you don’t do rigorous science, you can wind up increasing uncertainty, which can actually make things worse.”
Full story in Futurity

Meta: Type(s): Alumni | Subject(s): Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
04-11-2020
Psychologist, Alumna Lauren Hallion ’04 Talks to <em>Forbes</em> About Anxiety and the Coronavirus
“The reason we experience fear and anxiety is because our brains evolved to notice and pay attention to threats,” says Hallion. “In prehistoric times, those threats were sometimes predators, but they were sometimes diseases and viruses like the one we’re experiencing now. If your brain is afraid and doesn’t want to let you pay attention to anything but coronavirus (COVID-19), it is doing exactly what it is supposed to do to keep you, your loved ones, and your community safe.”
Full story in Forbes

Meta: Type(s): Alumni | Subject(s): Division of Science, Math, and Computing,Psychology Program | Institutes(s): Bard Undergraduate Programs |

March 2020

03-10-2020
Radio Kingston’s Kale Kaposhilin ’99 Brings the Equitable Internet Initiative to Kingston
Radio Kingston, a nonprofit radio station with a social justice agenda, will build a local wireless network over the next three years to provide low-cost internet service outside the corporate telecom system. The initiative isn’t only about giving people internet access: a digital stewards training program will provide residents with the skills to build and maintain a resilient digital ecosystem.
Full story in Chronogram

Meta: Type(s): Alumni | Subject(s): Community Engagement,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |

February 2020

02-18-2020
Bard College Biology Professor Felicia Keesing Wins Prestigious National Science Foundation Grant
ANNANDALE-ON-HUDSON, N.Y.— The National Science Foundation (NSF) has awarded Felicia Keesing, Bard College’s David and Rosalie Rose Distinguished Professor of Science, Mathematics, and Computing, a $241,000 grant for a project to write two papers that—drawing on Keesing’s 25 years of research into linkages between ecology, conservation, and health—aim to provide better conceptual frameworks for the study of the impact of biodiversity on plant, animal, and human health. The NSF grant includes funding for travel to conferences and salaries for several undergraduate research assistants over a two-year period.

As the climate warms and rates of local and global extinctions accelerate, understanding connections between the environment and the health of plants, animals, and humans has become increasingly urgent. While the field of disease ecology has held great promise because of the expectation that its practitioners can facilitate predictions and guide ecological interventions to mitigate health concerns connected to the environment, Keesing says that, too frequently, predictions come too late to be useful, and plans for mitigation must await years of data collection. Her project, “A synthesis of the effects of biodiversity on plant, animal, and human health,” looks to provide predictive frameworks that allow practitioners to take advantage of the results of prior research, adapting them to new situations as these arise.

“Ecology is increasingly seen as a key ally of the health sciences, but concrete examples of how ecology can productively inform health policy remain relatively scarce,” Keesing says. “The proposed syntheses could impact environmental policies that affect the health of humans, other animals, and plants, in part by framing research questions that urgently require exploration and explication.”
 

Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing,Faculty,Grants | Institutes(s): Bard Undergraduate Programs,Center for Environmental Sciences and Humanities |
02-07-2020
New Study Led by Bard Psychologist Richard Lopez Indicates Hiding Emotion after Spouse’s Death May Harm Health
After losing a loved one, it’s healthier to freely express your emotions, a new study indicates. Researchers surveyed 99 grieving spouses to assess how they were coping with the loss, then tested their blood for inflammatory markers called cytokines. The researchers determined that people who generally avoided expressing their emotions suffered more bodily inflammation, which is linked to a host of negative health conditions, than those who expressed their emotions freely.
Full story in Futurity
Read the study in Psychosomatic Medicine
Photo: Professor Richard Lopez. Photo by Jeff Fitlow/Rice University
Meta: Type(s): Faculty | Subject(s): Division of Science, Math, and Computing,Faculty,Psychology Program | Institutes(s): Bard Undergraduate Programs |
02-05-2020
Evan Nicole Brown ’16: These Vertical Farms Could Turn Brooklyn into an Agricultural Oasis
Creative agency Framlab is using modular architecture to build a better and more fair food future. Evan Nicole Brown ’16 writes about the potential transformational effect of these vertical farms in Brooklyn.
Full story in Fast Company
Photo: Photo courtesy Framlab
Meta: Type(s): Alumni | Subject(s): Bard Farm,Division of Science, Math, and Computing,Environmental/Sustainability | Institutes(s): Bard Undergraduate Programs |

January 2020

01-21-2020
Congressman Antonio Delgado Visits Bard Citizen Science Program
Congressman Antonio Delgado spoke with Bard Citizen Science students in the Reem-Kayden Center on the evening of Tuesday, January 21, about the health risks associated with PFAS chemicals, and his legislation to combat their proliferation. Congressman Delgado represents New York's 19th Congressional District, which includes the Bard campus. The Citizen Science curriculum tackles urgent, present-day questions related to water. The 470 students in the program this month, mostly first-years, are testing water samples as part of their research; that includes samples from the region around Bard as well as samples they collected at home over the winter break and brought to campus. The synergy between students' study of water contaminants and the congressman's concern about PFAS, both in District 19 and nationally, resulted in a thoughtful and informative discussion.

More about the Citizen Science Program
Photo: Congressman Delgado with Bard Professor and Citizen Science Director Mary Krembs. 
Meta: Subject(s): Community Engagement,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs,Citizen Science |
01-21-2020
Professor of Physics Hal Haggard and Colleagues Receive Buchalter Cosmology Prize for Black Hole Research
Bard College Assistant Professor of Physics Hal Haggard and his fellow researchers were awarded a 2019 Buchalter Cosmology Prize at the 235th meeting of the American Astronomical Society in Honolulu, Hawaii, on January 6. The annual prize series, created by Dr. Ari Buchalter in 2014, seeks to reward new ideas or discoveries that have the potential to produce a breakthrough advance in our understanding of the origin, structure, and evolution of the universe. Professor Haggard and his colleagues were recognized for research testing the Bekenstein-Hawking entropy of black holes.

The $5,000 Second Prize was awarded to Professor Haggard, of Bard College and the Perimeter Institute for Theoretical Physics, and colleagues from the Pennsylvania State University: Eugenio Bianchi, Anuradha Gupta, and B. S. Sathyaprakash (also of Cardiff University). The judging panel recognized their paper, “Quantum Gravity and Black Hole Spin in Gravitational Wave Observations: a Test of the Bekenstein-Hawking Entropy,” as “a remarkable test of the thermodynamic character of black holes, predicting the spin characteristics of an initial primordial population of black holes that thermalize in the early universe, and which could be detectable by current and near-future gravitational wave detectors.”

Haggard’s work is part of an ongoing scientific revolution in the study of black holes. Last year, scientists captured the first direct image of a black hole, less than four years after measuring, for the first time, the gravitational waves created by the collision of two black holes circling one another at nearly light speed. These waves directly oscillate space and time. Contrary to initial expectations, pairs of black holes crashing into each other give rise to most of the gravitational waves we can currently measure. Advanced facilities like the Laser Interferometer Gravitational-Wave Observatory (LIGO) are now observing and measuring black hole collisions about once a week.

Previously, scientists only knew about two main types of black holes: X-ray binary systems, which often contain one active star and a black hole, in the range of five to 15 times the mass of our sun, that “siphons off” mass from the donor star; and supermassive black holes, a class that includes the black hole imaged in 2019, which measures about 6.5 billion solar masses. 

Prior to LIGO, physicists did not expect that the main class of binary collisions measured would be of two black holes, or that those black holes would have masses in the range of 20 to 80 solar masses. Most surprising of all, it now appears possible that most of the black holes measured through gravitational waves aren’t spinning at all before they collide. Scientists had thought that the majority of black holes were formed in the gravitational collapse of a rotating star. 

Haggard and his colleagues’ paper shows that black holes formed in a different way, as part of the hot primordial soup of the early universe, could naturally have zero spin. The authors also find that these black holes would be expected to have masses of 10 to 100 times the mass of our sun. Their arguments are based on understanding how entropy and temperature determine the physical characteristics of a black hole, for example its spin. 

“I’m delighted about this paper because it brings together so many of the strands of my work,” says Haggard. “Gravitational wave measurements are an exciting probe of the rich interplay between gravitational thermodynamics, black holes, and the early history of the cosmos. It is a rare point of contact between the ideas that go into a quantum theory of gravity, like black hole entropy, and experimental observations that are happening right now.”

The $10,000 First Prize was awarded to Jahed Abedi and Niayesh Afshordi for their work entitled “Echoes from the Abyss: A Highly Spinning Black Hole Remnant for the Binary Neutron Star Merger GW170817.” The $2,500 Third Prize was awarded to José Beltrán Jiménez of Universidad de Salamanca and colleagues for their work entitled “The Geometrical Trinity of Gravity.”

Dr. Buchalter, a former astrophysicist turned business entrepreneur, established the prize series in the belief that significant breakthroughs in the field of cosmology still lie ahead but might require challenging and breaking with accepted paradigms. “The 2019 prizewinners represent bold thinking that can help open up new frontiers in our understanding of physics and of the universe,” said Dr. Buchalter. The judging panel for the annual prizes is made up of leading theoretical physicists noted for their work in cosmology. The 2019 panel included Justin Khoury and Mark Trodden of the University of Pennsylvania and Lee Smolin of the Perimeter Institute for Theoretical Physics. Learn more at buchwaltercosmologyprize.org.
Read the Paper in General Relativity and Quantum Cosmology
Visit the Physics Program Website
Photo: Bard College Assistant Professor of Physics Hal Haggard.
Meta: Type(s): Faculty | Subject(s): Division of Science, Math, and Computing,Physics Program | Institutes(s): Bard Undergraduate Programs |
01-18-2020
Bard’s Arthur Holland Michel: The Killer Algorithms Nobody’s Talking About
Activists fret about armies relying on killer robots, but some forms of artificial intelligence that don’t actually pull the trigger could still be a nightmare. “The widespread use of sophisticated autonomous aids in war would be fraught with unknown unknowns,” writes Holland Michel, codirector of the Bard Center for the Study of the Drone. “An algorithm with the power to suggest whether a tank should use a small rocket or a fighter jet to take out an enemy could mark the difference between life and death for anybody who happens to be in the vicinity of the target.” He concludes, “Automation’s vast potential to make humans more efficient extends to the very human act of committing war crimes.”
Full story in Foreign Policy
Photo: A pilot grasps a flight control and weapons firing stick while preparing to launch a U.S. Air Force MQ-1B Predator unmanned aerial vehicle, from a ground control station at a secret air base in the Persian Gulf region in 2016. Photo by John Moore/Getty Images
Meta: Type(s): Alumni,Staff | Subject(s): Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
01-15-2020
Professor Felicia Keesing Comments on Vaccine for Mice that May Slow Spread of Lyme Disease
New research into an oral Lyme Disease vaccine for mice shows promise for reducing human cases of the infection. Professor Keesing, who was not involved in the research, cautions against the limitations of the study but remains optimistic. “I love the spirit of this,” she says. “This has the advantage that a homeowner could put this product in their yard. Other products you need a trained technician.”
Full story at WBUR

Meta: Type(s): Faculty | Subject(s): Biology Program,Division of Science, Math, and Computing | Institutes(s): Bard Undergraduate Programs |
01-15-2020
The Algebra Project: Bard Alumna, Teacher Kate Belin on Using Math to Help Students Build More Ethical Communities
Kate Belin BA ’04, MAT ’05 teaches math at Fannie Lou Hamer Freedom High School, a small public school in the South Bronx that uses project-based learning. At Fannie Lou, she oversees the Algebra Project, a national initiative that connects math to students’ lived experiences. In this episode of the Ethical Schools podcast, Belin talks about the synergy between the Algebra Project and Fannie Lou, both of which have their roots in the history of the civil rights movement.
Podcast and Transcript at Ethical Schools
Photo: Photo courtesy Fannie Lou Hamer Freedom High School
Meta: Type(s): Alumni | Subject(s): Bard Graduate Programs,Division of Science, Math, and Computing,Mathematics Program | Institutes(s): Bard Undergraduate Programs,Master of Arts in Teaching |
01-05-2020
Two Bard College Students Win Prestigious Study Abroad Scholarships for 2020
Two Bard College students were awarded a highly competitive Benjamin A. Gilman International Scholarship by the U.S. Department of State. Art history major Tatiana Alfaro ’21 has been awarded $5,000 towards her studies at Bard College Berlin. “I’m so happy to have received the Gilman award. It’s definitely an honor and was unexpected. My experience with Gilman will enhance my experience abroad. Studying in Berlin will help me have a more global view on the art world, and specifically, what I want my role within it to be. I believe it will be a good opportunity for me to see my personal and academic interests overlap, not only as an art historian but as a global learner.”

Biology major Mary Reid ’21 has been awarded $3,000 for her term at the Lorenzo di Medici Institute in Florence, Italy. “Studying abroad is an aspiration for many students but financial concerns are often an impossible barrier. I am incredibly privileged to reach for my own aspirations as a result of this scholarship, my supportive friends, and my wonderful family. While abroad, I hope to gain a greater knowledge of new cultures and ideas, as well as an increased sense of autonomy and introspection. I am eager to make my study abroad experience live up to my childhood ambitions. Thank you to everyone who has made this possible.”

Gilman Scholars receive up to $5,000 to apply towards their study abroad or internship program costs with additional funding available for the study of a critical language overseas. The Gilman scholarship supports American undergraduate students of limited financial means to study or intern abroad and, since 2001, has enabled more than 31,000 outstanding Americans of diverse backgrounds to engage in a meaningful educational experience abroad. The program has successfully broadened U.S. participation in study abroad, while emphasizing countries and regions where fewer Americans traditionally study. The late Congressman Gilman, who served in the House of Representatives for 30 years, chaired the House Foreign Relations Committee, and was honored with the Secretary of State’s Distinguished Service Medal in 2002, commented, “Study abroad is a special experience for every student who participates. Living and learning in a vastly different environment of another nation not only exposes our students to alternate views, but also adds an enriching social and cultural experience. It also provides our students with the opportunity to return home with a deeper understanding of their place in the world, encouraging them to be a contributor, rather than a spectator in the international community.”
gilmanscholarship.org
Photo: (L-R) Bard College 2020 Gilman Scholars Tatiana Alfaro ’21 and Mary Reid ’21
Meta: Subject(s): Art History and Visual Culture,Bard Abroad,Biology Program,Community Engagement,Division of Science, Math, and Computing,Division of the Arts | Institutes(s): Bard Undergraduate Programs,Center for Civic Engagement |
01-02-2020
Bard Prison Initiative Alumnus Antoine Patton Learned to Code in Prison. Now He’s Connecting Other Prisoners to Their Kids
Once separated by prison, BPI alumnus Antoine Patton and his daughter, Jay Jay, built Photo Patch, an app that lets incarcerated parents stay in better touch with their children.
Full story at CNET
Photo: Jay Jay and Antoine Patton. Photo courtesy of CNET
Meta: Subject(s): Community Engagement,Division of Science, Math, and Computing | Institutes(s): Bard Prison Initiative,Center for Civic Engagement |
Results 1-36 of 36
Bard College
30 Campus Road, PO Box 5000
Annandale-on-Hudson, New York 12504-5000
Phone: 845-758-6822
Admission Email: [email protected]
Information For
Prospective Students
Current Employees
Alumni/ae 
Families

©2025 Bard College
Quick Links
Employment
Travel to Bard
Search
Support Bard
Bard IT Policies + Security
Bard has a long history of creating inclusive environments for all races, creeds, ethnicities, and genders. We will continue to monitor and adhere to all Federal and New York State laws and guidance.
Like us on Facebook
Follow Us on Instagram
Threads
Bluesky
YouTube