Division of Science, Mathematics, and Computing News by Date
listings 1-1 of 1
June 2022
06-07-2022
Bard College has received a $210,000 grant from the National Science Foundation (NSF) in support of Assistant Professor of Physics Antonios Kontos’s proposal “Research in Light Scattering Metrology for Gravitational Wave Optics.” The three-year NSF grant supports his continuing research, summer research assistants, and equipment. All research projects are to be carried out with the engagement of Bard undergraduate and local area high school students, who will be hired as summer research assistants, and provide opportunities to gain invaluable experience in pursuing careers in technology and academia.
“This NSF grant will ensure that Bard continues to contribute to the fascinating new field of gravitational wave astronomy and that our students will continue to engage in cutting edge research in optics,” says Kontos.
The NSF award supports Kontos’s research in gravitational wave (GW) detector instrumentation, one of the most important leaps in scientific progress in recent years. The Laser Interferometer Gravitational-wave Antenna (LIGO) project has given scientists the ability to observe the universe in a completely new way. Unlike conventional telescopes which use the light emitted by stars and galaxies to learn their properties and their place in the universe, GW detectors use gravitational waves which are similarly emitted by many astrophysical objects.
Gravitational-waves are ripples in spacetime that travel to Earth, and cause the detectors to essentially change in size. To do that, the LIGO detectors require state-of-the-art mirrors, which are used to sense the stretching of space. Improvements in mirror design will allow observers to look further into space, and detect more of these GW signals.
Kontos’s proposed project will aid in pushing the mirror technology, by utilizing light scattering as a tool to study mirror coatings. Specifically, an important aspect of mirror quality is the presence of defects which scatter light and inhibit the operation of the LIGO detectors. Defects may sometimes develop on the mirror surface with time, but the process is not always understood. This research project is designed to study defects on mirrors so that we can ultimately improve LIGO’s sensitivity and improve our understanding of space, time, matter, energy, and their interactions.
“This NSF grant will ensure that Bard continues to contribute to the fascinating new field of gravitational wave astronomy and that our students will continue to engage in cutting edge research in optics,” says Kontos.
The NSF award supports Kontos’s research in gravitational wave (GW) detector instrumentation, one of the most important leaps in scientific progress in recent years. The Laser Interferometer Gravitational-wave Antenna (LIGO) project has given scientists the ability to observe the universe in a completely new way. Unlike conventional telescopes which use the light emitted by stars and galaxies to learn their properties and their place in the universe, GW detectors use gravitational waves which are similarly emitted by many astrophysical objects.
Gravitational-waves are ripples in spacetime that travel to Earth, and cause the detectors to essentially change in size. To do that, the LIGO detectors require state-of-the-art mirrors, which are used to sense the stretching of space. Improvements in mirror design will allow observers to look further into space, and detect more of these GW signals.
Kontos’s proposed project will aid in pushing the mirror technology, by utilizing light scattering as a tool to study mirror coatings. Specifically, an important aspect of mirror quality is the presence of defects which scatter light and inhibit the operation of the LIGO detectors. Defects may sometimes develop on the mirror surface with time, but the process is not always understood. This research project is designed to study defects on mirrors so that we can ultimately improve LIGO’s sensitivity and improve our understanding of space, time, matter, energy, and their interactions.
listings 1-1 of 1